Giant LEAP to View Materials – One Atom at A Time

  • Research Stash
  • News
  • 1.9K

India is a leading player in nanotechnology research globally. To facilitate research in this sector, a national facility for Atom Probe Tomography has been established at the Indian Institute of Technology Madras, in partnership with several other institutes.

The set-up of LEAP microscope
The set-up of the LEAP microscope

Nanotechnology involves studying materials at the atomic level. Atom Probe Tomography with a local electrode is currently the only method that can determine both three-dimensional structure and the chemical composition of a material at an atomic resolution. Before the advent of this technology, the transmission electron microscope was used to probe materials, but it can provide information only in two dimensions.

“Local Electrode Atom Probe (LEAP) has an extremely fast acquisition rate of atoms from the sample and can work for a wide range of materials,” explained B S Murty, a scientist at IIT Madras.

In this method, the specimen is first shaped like a sharp needle using a focussed beam of gallium ions. When high energy ions strike the sample, atoms eject from its surface. This helps in shaping the sample into a sharp needle. Laser pulses are then applied to the needle-shaped specimen. This strips away the atoms that are present on its tip and converts them into charged ions. These ions hit a detector that can register its position and the time it took to travel from the sample to the detector. These parameters are then used to infer the identity of the ion.

Thus, atom-by-atom, the LEAP microscope can create a three-dimensional image of the sample. This method is particularly useful in determining buried features and interfaces inside a material.

“This is for the first time when eight institutions in the country have contributed financially to set up such a platform at a cost of nearly Rupees 40 crores”, Dr. Murty told India Science Wire.

The partner institutes include Indian Institutes of Technology at Bombay, Delhi, Kanpur, Kharagpur, Madras and Ropar, and International Advanced Research Centre for Powder Metallurgy and New Materials (Hyderabad), Board of Research in Nuclear Sciences and DST Nano Mission.

Another feature of the new facility is that it is the first remotely operable LEAP in the world. Each of the partner institutions has a local workstation that helps scientists to remotely interact with the facility. Using their respective workstation, they can log-in into the system, control experimental parameters, align the specimen, and acquire the data. The workstations have also been configured with full data analysis capabilities.

Apart from materials research, this technique is helpful for research in storage materials, bio-materials, catalytic materials, and geochemistry. The facility also houses a Tecnai T12 TEM microscope that produces high-resolution, two-dimensional images, allowing for a wide range application. This facility hopes to cater to the advanced materials characterization needs of the Indian research community. (India Science Wire)

By Dr. P Surat

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

Rate

In this method, the specimen is first shaped like a sharp needle using a focussed beam of gallium ions. When high energy ions strike the sample, atoms eject from its surface. This helps in shaping the sample into a sharp needle. Laser pulses are then applied to the needle-shaped specimen. This strips away the atoms that are present on its tip and converts them into charged ions. These ions hit a detector that can register its position and the time it took to travel from the sample to the detector. These parameters are then used to infer the identity of the ion.

Thus, atom-by-atom, the LEAP microscope can create a three-dimensional image of the sample. This method is particularly useful in determining buried features and interfaces inside a material.

“This is for the first time when eight institutions in the country have contributed financially to set up such a platform at a cost of nearly Rupees 40 crores”, Dr. Murty told India Science Wire.

The partner institutes include Indian Institutes of Technology at Bombay, Delhi, Kanpur, Kharagpur, Madras and Ropar, and International Advanced Research Centre for Powder Metallurgy and New Materials (Hyderabad), Board of Research in Nuclear Sciences and DST Nano Mission.

Another feature of the new facility is that it is the first remotely operable LEAP in the world. Each of the partner institutions has a local workstation that helps scientists to remotely interact with the facility. Using their respective workstation, they can log-in into the system, control experimental parameters, align the specimen, and acquire the data. The workstations have also been configured with full data analysis capabilities.

Apart from materials research, this technique is helpful for research in storage materials, bio-materials, catalytic materials, and geochemistry. The facility also houses a Tecnai T12 TEM microscope that produces high-resolution, two-dimensional images, allowing for a wide range application. This facility hopes to cater to the advanced materials characterization needs of the Indian research community. (India Science Wire)

By Dr. P Surat

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

" }
Study Provides Insights into Thermal Mechanisms of Droplet Type Cooling for Microchips

Study Provides Insights into Thermal Mechanisms of Droplet Type Cooling for Microchips

Researchers from the Indian Institutes of Technology at Madras and Roorkee, along with a scientist from the Indian Institute of Scientific Education and Research, Trivandrum, have now provided preliminary insights that water droplets transport heat absorbed from microchip surfaces by generating nano-range hydrothermal waves.

  • News
  • 3.4K
Read more
Gandhi: Fitness Freak, Champion of Sustainable Food and A Pioneering Vegan

Gandhi: Fitness Freak, Champion of Sustainable Food and A Pioneering Vegan

Gandhi believed that excessive eating, too frequent meals and overindulgence of concentrated starches and sugars were unhealthy and caused diseases. He suggested avoiding sweets as much as possible and consuming jaggery in small quantities

  • News
  • 1.4K
Read more
Indian Monsoon Recovering After Decades of Decline

Indian Monsoon Recovering After Decades of Decline

As the parched Indian subcontinent eagerly awaits the monsoon, all indications are that it will be a normal monsoon, especially since no El Niño is in the offing for 2018.

  • News
  • 1.4K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit