Seaweed Nanoparticles Can Clean Toxic Water

Seaweed Nano-particles Can Clean Toxic Water

  • Research Stash
  • News
  • 2.3K

Treatment of wastewater containing industrial dyes and toxic heavy metals is a major environmental problem as available treatment techniques are not very efficient and environment-friendly. Now a team of Indian scientists has developed a nanomaterial drawn from seaweed for effective treatment of toxic wastewater without using any chemicals.

Dr. Ramavatar Meena and his team

Membrane-based filtration processes are generally used to treat industrial wastewater but they can’t fully filter out heavy metal contaminants. In order to address this problem, processes that use activated carbon, graphene or carbon nanotubes are being developed as carbon-based processes can help remove dyes and heavy metals through adsorption.

Researchers at the Central Salt and Marine Chemicals Research Institute, Bhavnagar, have gone a step further to make carbon-based cleaning process fully green by using seaweed as starting material. They have synthesized graphene-iron sulfide nanocomposite from abundantly found seaweed – Ulva fasciata – through direct pyrolysis technique.

Seaweeds are known as carbon sinks. In some earlier studies, the biomass of Ulva fasciata has been directly employed for adsorbing copper and zinc ions from water but the uptake capacities were relatively low. This problem has been overcome by deriving thin carbon sheets from seaweed at very high temperature. These graphene sheets are doped with iron. The nanocomposite obtained from seaweed has shown very high adsorption capacity for various cationic and anionic dyes as well as lead and chromium.

The nanocomposite can be used in up to eight cleaning cycles, with only nominal loss of its adsorption capacity. Even mixed dyes could also be adsorbed. A maximum adsorption capacity of 645 mg per gram for the lead was achieved at neutral pH. This is the highest ever reported for any biomass-derived carbon material, scientists have claimed in their study published in Journal of Hazardous Materials. It could also remove highly toxic hexavalent chromium from wastewater.

“Presence of high concentration of salts had a negligible effect on the adsorption properties of the nanocomposite, making it a suitable candidate for the pre-treatment of highly contaminated wastewaters,” explained Dr. Ramavatar Meena, who led the team, while speaking to India Science Wire.

The nanocomposite was also tested by depositing it on a commercial filter paper and used in a customized flow cell in continuous filtration mode. Just five minutes of treatment could render highly toxic black dye solution into colorless water. “It shows that our configuration can be used in combination with other membrane-based processes like Reverse Osmosis and nanofiltration for complete and effective treatment of dye and textile industry wastewater,” said Dr. Meena.

The research team included Ashesh Mahto, Anshu Kumar, Madhuri Bhatt, Jai Prakash Chaudhary, Atul Kumar Sharma, Parimal Paul, Sanna Kotrappanavar Nataraj, Ramavatar Meena. The work was partly supported by the Science and Engineering Research Board, Department of Science and Technology (DST) and the Council of Scientific and Industrial Research (CSIR). (India Science Wire)

By Dinesh C Sharma

Journal Article

Solvent-free production of nano-FeS anchored Graphene from Ulva fasciata: A Scalable synthesis of super-adsorbent for lead, chromium, and dyes

For the latest Science, Tech news and conversations, follow Research Stash on TwitterFacebook, and subscribe to our YouTube channel 

Rate

Researchers at the Central Salt and Marine Chemicals Research Institute, Bhavnagar, have gone a step further to make carbon-based cleaning process fully green by using seaweed as starting material. They have synthesized graphene-iron sulfide nanocomposite from abundantly found seaweed – Ulva fasciata – through direct pyrolysis technique.

Seaweeds are known as carbon sinks. In some earlier studies, the biomass of Ulva fasciata has been directly employed for adsorbing copper and zinc ions from water but the uptake capacities were relatively low. This problem has been overcome by deriving thin carbon sheets from seaweed at very high temperature. These graphene sheets are doped with iron. The nanocomposite obtained from seaweed has shown very high adsorption capacity for various cationic and anionic dyes as well as lead and chromium.

The nanocomposite can be used in up to eight cleaning cycles, with only nominal loss of its adsorption capacity. Even mixed dyes could also be adsorbed. A maximum adsorption capacity of 645 mg per gram for the lead was achieved at neutral pH. This is the highest ever reported for any biomass-derived carbon material, scientists have claimed in their study published in Journal of Hazardous Materials. It could also remove highly toxic hexavalent chromium from wastewater.

“Presence of high concentration of salts had a negligible effect on the adsorption properties of the nanocomposite, making it a suitable candidate for the pre-treatment of highly contaminated wastewaters,” explained Dr. Ramavatar Meena, who led the team, while speaking to India Science Wire.

The nanocomposite was also tested by depositing it on a commercial filter paper and used in a customized flow cell in continuous filtration mode. Just five minutes of treatment could render highly toxic black dye solution into colorless water. “It shows that our configuration can be used in combination with other membrane-based processes like Reverse Osmosis and nanofiltration for complete and effective treatment of dye and textile industry wastewater,” said Dr. Meena.

The research team included Ashesh Mahto, Anshu Kumar, Madhuri Bhatt, Jai Prakash Chaudhary, Atul Kumar Sharma, Parimal Paul, Sanna Kotrappanavar Nataraj, Ramavatar Meena. The work was partly supported by the Science and Engineering Research Board, Department of Science and Technology (DST) and the Council of Scientific and Industrial Research (CSIR). (India Science Wire)

By Dinesh C Sharma

Journal Article

Solvent-free production of nano-FeS anchored Graphene from Ulva fasciata: A Scalable synthesis of super-adsorbent for lead, chromium, and dyes

For the latest Science, Tech news and conversations, follow Research Stash on TwitterFacebook, and subscribe to our YouTube channel 

" }
Protein Complexes Assemble at The Cell Membrane in A Polarised Manner

Protein Complexes Assemble at The Cell Membrane in A Polarized Manner

Researchers at IISc Bengaluru have deciphered how specific essential protein complexes are distributed across two regions in the cell membrane.

  • News
  • 2.4K
Read more
Poor Quality of Drugs Making Treatment of Ringworm Less Effective

Poor Quality of Drugs Making Treatment of Ringworm Less Effective

Drug resistance may not be the only reason for a drug failing to treat properly or losing its proven effectiveness. Poor quality of the drug might also be contributing to decreased effectiveness. This is what researchers have found in the case of a drug used to treat ringworm infection.

  • News
  • 2.7K
Read more
Researchers in the field

This Is How Drug Resistance Spreads in Urban Environment

Chemical residues released from pharmaceutical and personal care products are not only becoming a major contaminant of water bodies in urban areas but are also becoming a source of drug resistance in the environment, a new study has warned

  • News
  • 1.4K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit