What can we understand about neural circuits from the Drosophila visual system

What can we understand about neural circuits from the Drosophila visual system?

  • Research Stash
  • Episodes
  • 1.6K

Dr. Chi-Hon Lee, the director of the Institute of Cellular and Organismic Biology at Academia Sinica, answers many questions like why Drosophila is a good animal model to study the nervous system, what is a neural circuit, how we can study the visual system in Drosophila to better understand neural circuits and how a circuit can control behavior and much more.

https://radiopublic.com/stemspeak-6rRR0R/ep/s1!a4f67

If you want to know more about his work in cognitive neuroscience, visit here

Using the Drosophila visual system as a model, we study how neurons form complex yet stereotyped synaptic connections during development and how the assembled neural circuits extract visual attributes, such as color and motion, to guide animal behaviors. To study visual circuit functions, we combine structural and functional approaches to map visual circuits.

With targeted manipulation of neuronal activity, we identified specific neurons that are functionally required for color-driven behaviors. Using both lights- and electron microscopy (EM) studies, we mapped the neurons’ synaptic circuits.

For circuit development, we focus on the formation of synaptic connections between the chromatic photoreceptors and their synaptic partners in the medulla neuropil. We used high-resolution imaging techniques and genetic manipulations to delineate the molecular mechanisms that control dendritic patterning and synaptic specificity of the medulla neurons.

Did you miss the previous episode? Listen to Episode 3

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

Rate

Using the Drosophila visual system as a model, we study how neurons form complex yet stereotyped synaptic connections during development and how the assembled neural circuits extract visual attributes, such as color and motion, to guide animal behaviors. To study visual circuit functions, we combine structural and functional approaches to map visual circuits.

With targeted manipulation of neuronal activity, we identified specific neurons that are functionally required for color-driven behaviors. Using both lights- and electron microscopy (EM) studies, we mapped the neurons’ synaptic circuits.

For circuit development, we focus on the formation of synaptic connections between the chromatic photoreceptors and their synaptic partners in the medulla neuropil. We used high-resolution imaging techniques and genetic manipulations to delineate the molecular mechanisms that control dendritic patterning and synaptic specificity of the medulla neurons.

Did you miss the previous episode? Listen to Episode 3

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

" }

Seven Taiwan universities rank in Asia-Pacific top 100

A total of seven Taiwan tertiary education institutions are ranked among the 100 best universities in the Asia-Pacific, according to U.K.-based Times Higher Education magazine July 4.

  • News
  • 1.8K
Read more

Self-driving bus set for testing in Taipei

A self-driving bus will be put through its paces Aug. 1-5 in Taipei as part of local government efforts to spur the metropolis’s smart city development and further enhance the quality of life for residents.

  • News
  • 1.8K
Read more
A Real Space Odyssey - Dr. Claudia Antolini

A Real Space Odyssey – Dr. Claudia Antolini

In the aftermath of the 50th anniversary of Moon landing, Dr. Claudia Antolini from the Public Engagement Team at the Roslin Institute, University of Edinburgh, discusses the emergence of space as a research frontier, what we have learned from our missions to the moon, what are the benefits of space research, what questions we need to address in the future. She also charts her career path from Ph.D. to postdoc in physics and science communication

Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit