What can we understand about neural circuits from the Drosophila visual system

What can we understand about neural circuits from the Drosophila visual system?

  • Research Stash
  • Episodes
  • 1.5K

Dr. Chi-Hon Lee, the director of the Institute of Cellular and Organismic Biology at Academia Sinica, answers many questions like why Drosophila is a good animal model to study the nervous system, what is a neural circuit, how we can study the visual system in Drosophila to better understand neural circuits and how a circuit can control behavior and much more.

https://radiopublic.com/stemspeak-6rRR0R/ep/s1!a4f67

If you want to know more about his work in cognitive neuroscience, visit here

Using the Drosophila visual system as a model, we study how neurons form complex yet stereotyped synaptic connections during development and how the assembled neural circuits extract visual attributes, such as color and motion, to guide animal behaviors. To study visual circuit functions, we combine structural and functional approaches to map visual circuits.

With targeted manipulation of neuronal activity, we identified specific neurons that are functionally required for color-driven behaviors. Using both lights- and electron microscopy (EM) studies, we mapped the neurons’ synaptic circuits.

For circuit development, we focus on the formation of synaptic connections between the chromatic photoreceptors and their synaptic partners in the medulla neuropil. We used high-resolution imaging techniques and genetic manipulations to delineate the molecular mechanisms that control dendritic patterning and synaptic specificity of the medulla neurons.

Did you miss the previous episode? Listen to Episode 3

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

Rate

Using the Drosophila visual system as a model, we study how neurons form complex yet stereotyped synaptic connections during development and how the assembled neural circuits extract visual attributes, such as color and motion, to guide animal behaviors. To study visual circuit functions, we combine structural and functional approaches to map visual circuits.

With targeted manipulation of neuronal activity, we identified specific neurons that are functionally required for color-driven behaviors. Using both lights- and electron microscopy (EM) studies, we mapped the neurons’ synaptic circuits.

For circuit development, we focus on the formation of synaptic connections between the chromatic photoreceptors and their synaptic partners in the medulla neuropil. We used high-resolution imaging techniques and genetic manipulations to delineate the molecular mechanisms that control dendritic patterning and synaptic specificity of the medulla neurons.

Did you miss the previous episode? Listen to Episode 3

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

" }
Economics of Agriculture and Climate Change - Dr. Emily Chang

Economics of Agriculture and Climate Change – Dr. Emily Chang

Dr. Emily Chang from The Institute of Economics, Academia Sinica talks about how agricultural policies are designed based on production efficiency, demand, and supply chains, what are the challenges in measuring climate change and developing sustainable economic policies

Read more

CircRNA – A Key to Unlocking Pluripotent Stem Cells for Regenerative Medicine or Other Innovative Medical Technologies

When cells in the human body become aged or injured, pluripotent stem cells may provide a means for repair. These cells can be induced to form a variety of different cell types and may be able to replace dysfunctional cells or regrow damaged tissues.

  • News
  • 2.7K
Read more
EMBO Global Investigator Network Winners for 2019

EMBO Global Investigator Network Winners for 2019

Three Indian scientists have been selected to join the European Molecular Biology Organization’s recently launched Global Investigator Network Programme that is designed to support life scientists who are in the early stages of establishing independent laboratories, to have access to career-enhancing training and networking opportunities.

  • News
  • 2.6K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit