Man-Made Earthquakes Triggered by Fracking and Dams Are Not Localized

Man-Made Earthquakes Triggered by Fracking and Dams Are Not Localized

  • Research Stash
  • News
  • 2K

Seismic activity triggered by human actions like the construction of large dams or injection of wastewater into the ground for oil and gas production can have far greater implications than previously thought, a new study has revealed.

While it is well known that injection of fluid into the subsurface of the earth (one kilometer deep) can cause events like earthquakes, it was believed till now that such disturbances are limited to an area near the site of injection.

The new study has found that subsurface disturbances due to fluid injection can result in earthquakes spread over larger regions, going far beyond the area invaded by the injected fluids. This means earthquake-triggering stresses can travel far.

In India, the most famous fluid-induced earthquake had occurred in 1967 at Koyna in Maharashtra and was attributed to the seismic activity generated due to the impoundment of the Koyna dam there.

Earthquakes occurring in the tectonically quiet region of Oklahoma have also been linked to oil and gas exploration activity there. It is believed that such regions of man-made earthquake activity surpass the level of seismic activity in hotspots like southern California.

In the new study published in the journal Science, researchers from India and America used data from earlier experiments and a hydro-mechanical model developed by them to explain the full dimensions of fluid-induced earthquakes. The field data came from experiments done in France by the University of Aix-Marseille and the University of Nice Sophia-Antipolis.

Pathikrit Bhattacharya
Pathikrit Bhattacharya

“Our study shows that fluid-injection has the potential to cause significant, rapidly spreading earthquake activity beyond the fluid diffusion zone,” explained Pathikrit Bhattacharya of the Indian Institute of Technology, Bhubaneswar, lead author of the study, while speaking to India Science Wire.

Oil and gas extraction using fluid injection, as well as wastewater disposal, is known to increase the seismicity rate in surrounding regions. Tremblors attributed to these activities have been thought to occur at higher fluid pressures in surrounding rocks trigger instabilities in pre-existing networks of faults. However, the injection may also cause aseismic slip—deformation caused along a fault line without any accompanying seismic waves—that may in turn trigger earthquakes.

Robert C. Viesca
Robert C. Viesca

“The field experiments by the French scientists had demonstrated that when fluid injection occurs near existing faults, their primary response could be slow, quiet, aseismic slip rather than violent earthquakes. We used this data to show that aseismic slip could rapidly outpace the region of fluid-diffusion and transmit potentially earthquake-inducing stress perturbations to regions remote from the location of injection,” said Robert C. Viesca of Tufts University’s School of Engineering, co-author of the study.

Understanding the science behind fluid-induced earthquakes could help in unraveling reservoir-induced earthquakes in Koyna. The ‘Deep Drilling at Koyna’ initiative led by Noida-based National Centre for Seismology and CSIR-National Geophysical Research Institute in Hyderabad is studying detailed behavior of fluid-induced earthquakes in the region.

“These efforts are expected to yield data about fault behavior at greater depths in the earth’s crust. Our study is a proof-of-concept of how such data can be used in practice to produce more reliable models of earthquake hazard,” added Bhattacharya. (India Science Wire)

By Dinesh C Sharma

Journal Article: Fluid-induced aseismic fault slip outpaces pore-fluid migration

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

Rate

In India, the most famous fluid-induced earthquake had occurred in 1967 at Koyna in Maharashtra and was attributed to the seismic activity generated due to the impoundment of the Koyna dam there.

Earthquakes occurring in the tectonically quiet region of Oklahoma have also been linked to oil and gas exploration activity there. It is believed that such regions of man-made earthquake activity surpass the level of seismic activity in hotspots like southern California.

In the new study published in the journal Science, researchers from India and America used data from earlier experiments and a hydro-mechanical model developed by them to explain the full dimensions of fluid-induced earthquakes. The field data came from experiments done in France by the University of Aix-Marseille and the University of Nice Sophia-Antipolis.

Pathikrit Bhattacharya
Pathikrit Bhattacharya

“Our study shows that fluid-injection has the potential to cause significant, rapidly spreading earthquake activity beyond the fluid diffusion zone,” explained Pathikrit Bhattacharya of the Indian Institute of Technology, Bhubaneswar, lead author of the study, while speaking to India Science Wire.

Oil and gas extraction using fluid injection, as well as wastewater disposal, is known to increase the seismicity rate in surrounding regions. Tremblors attributed to these activities have been thought to occur at higher fluid pressures in surrounding rocks trigger instabilities in pre-existing networks of faults. However, the injection may also cause aseismic slip—deformation caused along a fault line without any accompanying seismic waves—that may in turn trigger earthquakes.

Robert C. Viesca
Robert C. Viesca

“The field experiments by the French scientists had demonstrated that when fluid injection occurs near existing faults, their primary response could be slow, quiet, aseismic slip rather than violent earthquakes. We used this data to show that aseismic slip could rapidly outpace the region of fluid-diffusion and transmit potentially earthquake-inducing stress perturbations to regions remote from the location of injection,” said Robert C. Viesca of Tufts University’s School of Engineering, co-author of the study.

Understanding the science behind fluid-induced earthquakes could help in unraveling reservoir-induced earthquakes in Koyna. The ‘Deep Drilling at Koyna’ initiative led by Noida-based National Centre for Seismology and CSIR-National Geophysical Research Institute in Hyderabad is studying detailed behavior of fluid-induced earthquakes in the region.

“These efforts are expected to yield data about fault behavior at greater depths in the earth’s crust. Our study is a proof-of-concept of how such data can be used in practice to produce more reliable models of earthquake hazard,” added Bhattacharya. (India Science Wire)

By Dinesh C Sharma

Journal Article: Fluid-induced aseismic fault slip outpaces pore-fluid migration

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

" }
The Nobel Prize in Physiology or Medicine 2019 - How Cells Adapt to Changes in Oxygen Levels

The Nobel Prize in Physiology or Medicine 2019 Awarded for The Discovery of How Cells Sense Oxygen

This year’s Nobel Laureates revealed the mechanism for one of life’s most essential adaptive processes. They established the basis for our understanding of how oxygen levels affect cellular metabolism and physiological function. Their discoveries have also paved the way for promising new strategies to fight anemia, cancer and many other diseases

  • News
  • 2.5K
Read more
Dial A Motorbike Ambulance in Case of a Heart Attack

Dial A Motorbike Ambulance in Case of a Heart Attack

The Indian Council of Medical Research is all set to launch a pilot project named Mission DELHI or Delhi Emergency Life Heart Attack Initiative.

  • News
  • 2.1K
Read more
Monsoon Modeling Is Not Like the ‘Blind Men and Elephant’ Story

Monsoon Modeling Is Not Like the ‘Blind Men and Elephant’ Story

In a few weeks from now, monsoon forecasts will begin. These forecasts are based on calculations made by computer modeling.

  • News
  • 1.2K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit