This Nanomaterial May Help Forensics Go High Tech

  • Research Stash
  • News
  • 1.9K

Invisible fingerprints accidentally left behind by criminals are often difficult to decipher because available techniques can’t capture all the nuances in them. At times, they may be unclear because of damaged fingers. A new nanomaterial developed by a group of Indian scientists promises to overcome such difficulties and also make the process of reading latent fingerprints faster.

This Nanomaterial May Help Forensics Go High Tech

The nanomaterial, consisting of semiconductor particles that are a million times smaller than a millimeter, is luminescent. All one will need to do is sprinkle the nanomaterial on the surface where fingerprint has been left behind, capture the image using a UV lamp and process it to reconstruct the fingerprint. Researchers said that such fingerprints could be captured using a mobile phone too and transmitted to forensic lab from any crime scene.

The new material has been developed by doping manganese and copper atoms on zinc sulfide nanosystem. By replacing zinc atoms with those of copper and manganese, researchers could change the optical properties of zinc sulfide nanosystem. When this material is applied to latent fingerprints, its strong visible luminescence property helps decipher fingerprints.

In laboratory experiments, the nanoparticles could help identify all the minute patterns of fingerprints such as island, fork, core, bifurcation, short ridge, and ridge ending even with fingerprints that were two months old. Researchers used a smartphone for capturing fingerprint images on different surfaces like transparent adhesive tape, smooth paper, optical mouse, a plastic surface and polymer film under the ultraviolet light.

The ridge patterns of the human finger produce a unique fingerprint.  When human fingers touch a surface, secretions present at the surface of the skin get transferred to the surface leaving an impression of the ridge pattern.

“The finely-resolved intensity patterns of fingerprints that this material yield shows that it has great usefulness in meeting the various demands in latent fingerprint detection,” Dr. Chandra S. Tiwary, a member of the research team at Indian Institute of Technology Kharagpur, told India Science Wire.

Researchers plan to improve the light emission efficiency of the nanomaterial and also develop a smart portable device for application in the forensic sector for online retrieval of data and identification of latent fingerprints. The group has also used the new material to develop white LED.

The material has been developed at Nanoscience Laboratory, National Institute of Technology (NIT) Durgapur. The research team included Partha Kumbhakar, Subrata Biswas, Pathik Kumbhakar (NIT); Prafulla Pandey (IIT, Gandhinagar) and Chandra S. Tiwary (IIT Kharagpur). The research results have been published in journal Nanoscale. (India Science Wire)

By Dinesh C Sharma

Journal Article

Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

The new material has been developed by doping manganese and copper atoms on zinc sulfide nanosystem. By replacing zinc atoms with those of copper and manganese, researchers could change the optical properties of zinc sulfide nanosystem. When this material is applied to latent fingerprints, its strong visible luminescence property helps decipher fingerprints.

In laboratory experiments, the nanoparticles could help identify all the minute patterns of fingerprints such as island, fork, core, bifurcation, short ridge, and ridge ending even with fingerprints that were two months old. Researchers used a smartphone for capturing fingerprint images on different surfaces like transparent adhesive tape, smooth paper, optical mouse, a plastic surface and polymer film under the ultraviolet light.

The ridge patterns of the human finger produce a unique fingerprint.  When human fingers touch a surface, secretions present at the surface of the skin get transferred to the surface leaving an impression of the ridge pattern.

“The finely-resolved intensity patterns of fingerprints that this material yield shows that it has great usefulness in meeting the various demands in latent fingerprint detection,” Dr. Chandra S. Tiwary, a member of the research team at Indian Institute of Technology Kharagpur, told India Science Wire.

Researchers plan to improve the light emission efficiency of the nanomaterial and also develop a smart portable device for application in the forensic sector for online retrieval of data and identification of latent fingerprints. The group has also used the new material to develop white LED.

The material has been developed at Nanoscience Laboratory, National Institute of Technology (NIT) Durgapur. The research team included Partha Kumbhakar, Subrata Biswas, Pathik Kumbhakar (NIT); Prafulla Pandey (IIT, Gandhinagar) and Chandra S. Tiwary (IIT Kharagpur). The research results have been published in journal Nanoscale. (India Science Wire)

By Dinesh C Sharma

Journal Article

Tailoring of structural and photoluminescence emissions by Mn and Cu co-doping in 2D nanostructures of ZnS for the visualization of latent fingerprints and generation of white light

If you liked this article, then please subscribe to our YouTube Channel for the latest Science & Tech news. You can also find us on Twitter & Facebook.

" }
Judicious Use of Bio Insecticide May Help Control Filariasis Vector

Judicious Use of Bio Insecticide May Help Control Filariasis Vector

Filariasis is a public health problem in some parts of India. It is caused by parasitic worms which get deposited on the skin and penetrate on their own or through openings created by mosquito bites to reach the lymphatic system.

  • News
  • 1.6K
Read more

MOST, Taiwan unveils plan for AI research centers

The Ministry of Science and Technology unveiled plans July 6 to establish up to four artificial intelligence innovation research centers across Taiwan as part of government efforts to enhance the nation’s competitiveness in AI technology.

  • News
  • 2K
Read more
New Devices for Hearing-Impaired and People with Motor Disabilities

New Devices for Hearing-Impaired and People with Motor Disabilities

Researchers at the Indian Institute of Technology, Madras are working on developing new wearable devices that will assist people with hearing impairment and cerebral palsy, and other motor disabilities to communicate independently and enhance their quality of life.

  • News
  • 1.4K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit