Researchers Quantify Breast Cancer Risk Based on Rare Variants and Background Risk Findings Reported at ASHG 2017 Annual Meeting

  • Research Stash
  • News
  • 1.4K

BETHESDA, MD – Rare variants combined with background genetic risk factors may account for many unexplained cases of familial breast cancer, and knowing the specific genes involved could inform choice of prevention and treatment strategies, according to findings presented in a plenary session at the American Society of Human Genetics (ASHG) 2017 Annual Meeting in Orlando, Fla.

Na Li, MD, and Ian Campbell, PhD

Na Li, MD, and Ian Campbell, Ph.D., Peter MacCallum Cancer Centre (courtesy Drs. Li and Campbell)

Researchers Na Li, MD, who presented the work; Ian Campbell, Ph.D., lead investigator; and their colleagues at the Peter MacCallum Cancer Centre in Melbourne, Australia, focused their study on patients at high risk of breast cancer: those with a personal or family history who were seeking an explanation.

“When you know which gene is conferring the risk of breast cancer, you can provide a more precise estimate of risk, know what to expect and watch out for, and tailor risk management strategies to the patient,” said Dr Campbell. Unfortunately, in about half of these high-risk patients, no known genetic cause was found, suggesting a more complicated explanation. In such cases, cancer geneticists had long suspected that polygenic risk (risk conferred by a combination of genetic variants) was involved.

Genes do not work on their own, but rather as part of one’s overall genetic context explained Dr Li. “That ‘polygenic risk’ background is like a landscape full of hills and valleys, with each risky variant like a house on top of it,” she said. “If you inherit a high-risk variant – a tall house – but live in a valley, your overall risk of breast cancer may end up being average because your genetic landscape pulls it down.”

The concept of background genetic risk is not new, but for many years, scientists did not have the tools to collect and analyze the thousands of genomes needed to quantify it. Recent improvements in next-generation sequencing technology have addressed this challenge. As a result, Dr Li and colleagues were able to sequence up to 1,400 candidate breast cancer genes in 6,000 familial breast cancer patients and 6,000 cancer-free controls. In this large sample, they searched for potential cancer-associated genes suggested by the literature, collaborators, and their own previous results, and identified at least 46 genes that were at least twice as likely to have mutations among participants with breast cancer than in those without.

They also used the data to calculate a polygenic risk score for each patient and combined this score with data on their high and moderate-risk variants to estimate each patient’s overall risk of developing breast cancer. In the coming years, the researchers plan to expand the study internationally to further test and refine their findings across populations. They also hope to bring these more precise risk estimates into the clinic, to more accurately reassure women about their personal risk of cancer, or – if the risk is high – advise preventive strategies such as screening at a younger age.

More Details

Reference: Li N et al. (2017 Oct 20). Abstract: The contribution of rare variants, polygenic risk, and novel candidate genes to the hereditary risk of breast cancer in a large cohort of breast cancer families. Presented at the American Society of Human Genetics 2017 Annual Meeting. Orlando, Florida.

Rate

Genes do not work on their own, but rather as part of one’s overall genetic context explained Dr Li. “That ‘polygenic risk’ background is like a landscape full of hills and valleys, with each risky variant like a house on top of it,” she said. “If you inherit a high-risk variant – a tall house – but live in a valley, your overall risk of breast cancer may end up being average because your genetic landscape pulls it down.”

The concept of background genetic risk is not new, but for many years, scientists did not have the tools to collect and analyze the thousands of genomes needed to quantify it. Recent improvements in next-generation sequencing technology have addressed this challenge. As a result, Dr Li and colleagues were able to sequence up to 1,400 candidate breast cancer genes in 6,000 familial breast cancer patients and 6,000 cancer-free controls. In this large sample, they searched for potential cancer-associated genes suggested by the literature, collaborators, and their own previous results, and identified at least 46 genes that were at least twice as likely to have mutations among participants with breast cancer than in those without.

They also used the data to calculate a polygenic risk score for each patient and combined this score with data on their high and moderate-risk variants to estimate each patient’s overall risk of developing breast cancer. In the coming years, the researchers plan to expand the study internationally to further test and refine their findings across populations. They also hope to bring these more precise risk estimates into the clinic, to more accurately reassure women about their personal risk of cancer, or – if the risk is high – advise preventive strategies such as screening at a younger age.

More Details

Reference: Li N et al. (2017 Oct 20). Abstract: The contribution of rare variants, polygenic risk, and novel candidate genes to the hereditary risk of breast cancer in a large cohort of breast cancer families. Presented at the American Society of Human Genetics 2017 Annual Meeting. Orlando, Florida.

" }
Green Technique Can Convert Plaster Of Paris Waste into Useful Products

Green Technique Can Convert Plaster Of Paris Waste into Useful Products

A team of scientists has developed a technique that promises to help recycle Plaster of Paris waste from hospitals and other medical centers in a simple, eco-friendly and economical way

  • News
  • 3.2K
Read more
New Coordinated Effort for Malaria Research Unveiled

New Coordinated Effort for Malaria Research Unveiled

The Indian Council of Medical Research has put together a programme to bring the various stakeholders on a single platform to identify and prioritize research work needed to meet the target to eliminate the disease by 2030. Called Malaria Elimination Research Alliance India, the programme took off today with the first meeting of the stakeholders.

  • News
  • 1.6K
Read more
Insect Stings Inspire Syringe-Needle Designs

Insect Stings Inspire Syringe-Needle Designs

A group of scientists at Indian Institute of Technology Ropar and Ohio State University has jointly studied stingers of wasps, honeybees, and mosquitoes. They examined the structure and mechanical properties of the stings and also mechanical behavior during insertion of wasp and honeybee stingers as well as piercers in the mosquito.

  • News
  • 3K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit