The protein responsible for the accumulation of somatic mutations in multiple cancers is identified.

  • Biology
  • 1.7K

Researchers from Taiwan identify the protein responsible for the accumulation of somatic mutations in various cancers. The study conducted by Dr. Shen, Chen-Yang and his team at Institute of Biomedical Sciences, Academia Sinica, shows that the protein B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting Epidermal Growth Factor receptor (EGFR).

Shen Chen Yang
IBMS, Academia Sinica

 

One of the key signatures of cancer genomes is the buildup of DNA mutations, the most abundant of which is the cytosine-to-thymine (C-to-T) transition that results from cytosine deamination. Investigation of The Cancer Genome Atlas (TCGA) database has established that this changeover is triggered mainly by upregulation of the cytosine deaminase APOBEC3B (A3B), but the mechanism has not been completely characterized.

The research from the current study shows that B-Myb (coded by MYBL2 gene) binds the A3B promoter, causing transactivation, and this is responsible for the C-to-T transitions and DNA hypermutation in breast cancer cells. Analysis of TCGA database yielded similar results, supporting that MYBL2 and A3B are upregulated and putatively promote C-to-T transitions in multiple cancer types. Moreover, blockade of EGF receptor with afatinib attenuated B-Myb–A3B signaling, suggesting a clinically relevant means of suppressing mutagenesis.

The study suggests that the protein B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting EGF receptor.

The full-length article can be found here https://www.nature.com/articles/srep44089

Rate

0 out of 5 stars(0 ratings)

Research Stash Weekly Review 3

We're excited to bring you the latest news from Science and Tech in Research Stash Weekly Review 3

Read more

This Seoul Based Nonprofit Wants to Make Scholarly Communication Transparent Using Blockchain Technology

According to National Science Foundation, 4000 new papers are published within the scientific community every day and the number of annual publications has increased from 1 million in 2000 to more than 2 million in 2013.

Read more

Sensors detect disease markers in breath

A small, thin square of an organic plastic that can detect disease markers in breath or toxins in a building’s air could soon be the basis of portable, disposable sensor devices. By riddling the thin plastic films with pores, University of Illinois researchers made the devices sensitive enough to detect at levels that are far too low to smell, yet are important to human health.

  • News
  • 1.7K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit