The protein responsible for the accumulation of somatic mutations in multiple cancers is identified.

  • Research Stash
  • Biology
  • 1.9K

Researchers from Taiwan identify the protein responsible for the accumulation of somatic mutations in various cancers. The study conducted by Dr. Shen, Chen-Yang and his team at Institute of Biomedical Sciences, Academia Sinica, shows that the protein B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting Epidermal Growth Factor receptor (EGFR).

Shen Chen Yang
IBMS, Academia Sinica

 

One of the key signatures of cancer genomes is the buildup of DNA mutations, the most abundant of which is the cytosine-to-thymine (C-to-T) transition that results from cytosine deamination. Investigation of The Cancer Genome Atlas (TCGA) database has established that this changeover is triggered mainly by upregulation of the cytosine deaminase APOBEC3B (A3B), but the mechanism has not been completely characterized.

The research from the current study shows that B-Myb (coded by MYBL2 gene) binds the A3B promoter, causing transactivation, and this is responsible for the C-to-T transitions and DNA hypermutation in breast cancer cells. Analysis of TCGA database yielded similar results, supporting that MYBL2 and A3B are upregulated and putatively promote C-to-T transitions in multiple cancer types. Moreover, blockade of EGF receptor with afatinib attenuated B-Myb–A3B signaling, suggesting a clinically relevant means of suppressing mutagenesis.

The study suggests that the protein B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting EGF receptor.

The full-length article can be found here https://www.nature.com/articles/srep44089

Rate

The research from the current study shows that B-Myb (coded by MYBL2 gene) binds the A3B promoter, causing transactivation, and this is responsible for the C-to-T transitions and DNA hypermutation in breast cancer cells. Analysis of TCGA database yielded similar results, supporting that MYBL2 and A3B are upregulated and putatively promote C-to-T transitions in multiple cancer types. Moreover, blockade of EGF receptor with afatinib attenuated B-Myb–A3B signaling, suggesting a clinically relevant means of suppressing mutagenesis.

The study suggests that the protein B-Myb–A3B contributes to DNA damage and could be targeted by inhibiting EGF receptor.

The full-length article can be found here https://www.nature.com/articles/srep44089

" }
Vikram Made Headlines but The Year Saw Many Significant Developments in Indian Science

Rewind 2019: Vikram Made Headlines but The Year Saw Many Significant Developments in Indian Science

Chandryaan-2 may have dominated popular imagination during 2019 despite the lander Vikram failing to soft-land on the lunar surface, but the year was marked by several significant developments by Indian scientists in fields ranging from nanotechnology to climate change

  • News
  • 1.3K
Read more
Three Guinness Records Set at India International Science Festival

Three Guinness Records Set at India International Science Festival

Three Guinness World Records were set during the course of the fifth edition of the India International Science Festival (IISF), which ended here on Friday

  • News
  • 1.7K
Read more
Looking in Cellular Trash Cans

Looking in Cellular Trash Cans

A novel technology for profiling protein turnover and degradation offers new insight into diagnosis and understanding the molecular basis of autoimmunity, cancer, neurodegeneration, and other disorders

  • News
  • 1.2K
Read more

Internet is huge! Help us find great content

Newsletter

Never miss a thing! Sign up for our newsletter to stay updated.

About

Research Stash is a curated collection of tools and News for S.T.E.M researchers

Have any questions or want to partner with us? Reach us at hello@researchstash.com

Navigation

Submit